NASA
Technical
Paper
3198

1992

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

Software Design for
Automated Assembly
of Truss Structures

Catherine L. Herstrom,
Carolyn Grantham,
Cheryl L. Allen,
William R. Doggett,

and Ralph W. Will
Langley Research Center
Hampton, Virginia

The use of trademarks or names of manufacturers in this
report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and
Space Administration.

Abstract

Concern over limited extravehicular and intravehicular activitiy time has
increased the interest in performing in-space assembly and construction op-
erations with automated robotic systems. A technique being considered at
Langley Research Center is a supervised-autonomy approach, which can be
monitored by an Earth-based supervisor that intervenes only when the au-
tomated system encounters a problem. A test-bed to support evaluation of
the hardware and software requirements for supervised-autonomy assembly
methods has been developed. This report describes the design of the software
system necessary to support the assembly process. The system is implemented
and successfully assembles and disassembles a planar tetrahedral truss struc-
ture. The software is hierarchical and supports both automated assembly
operations and supervisor error-recovery procedures, including the capability
to pause and reverse any operation. The software design serves as a model
for the development of software for more sophisticated automated systems
and as a test-bed for evaluation of new concepts and hardware components.

Introduction

A number of future space missions will require
large truss structures, some of which will support
functional surfaces such as antennas, reflectors, and
aerobrakes. Two examples of such missions arc
shown in figure 1. Figure 1(a) is an astronomi-
cal observatory, and figure 1(b) is a Mars mission
vehicle with a truss-supported aerobrake. Consid-
erable effort has been expended during the past
10 years toward establishing a capability of assem-
bling large space structures on orbit (refs. 1 and 2).
A shuttle flight experiment of a large truss structure
(ref. 3) and recent truss-supported reflector designs
(ref. 4) are aimed at astronaut assembly. However,
current concern over limited astronaut EVA (extra-
vehicular activity) and IVA (intravehicular activity)
time (ref. 5) has increased the interest in performing
in-space assembly and construction with automated,
robotic systems. One particularly attractive alterna-
tive utilizes the operator as a supervisor or system
monitor, called upon only when the robotic system
requires intervention or assistance. This mode of op-
eration, known as supervised autonomy, eliminates
planned EVA for construction and reduces 1VA. Su-
pervised autonomy has the advantage that it can be
performed from any location, including the ground,
since it does not require the performance of time-
critical active functions by the operator.

To date, very little effort has been directed to-
ward the development of automated robotic methods
for large truss structures. Langley Research Center
(LaRC) has developed a unique facility to support
the first detailed study of automated structural as-
sembly (ref. 6). The interdisciplinary effort focuses
on gaining practical experience in the automated as-

sembly of large, generic, truss-structure hardware de-
signed for robotic operations.

The objective of this report is to describe the
requirements and design of the software that per-
forms the automated assembly of the truss structure
and to discuss the interface and interaction between
the software program, the system hardware, and the
opecrator. An initial version of the automated as-
sembly system has been developed and is currently
opcrational. Considerable experience has been ac-
cumulated in the assembly and disassembly of a
102-member tetrahedral truss structure (refs. 6 to 8).
The assembly system components are described, and
a narrative of the assembly process 1s given, to serve
as a basis for the description of the software and its
functions. The actual implementation of the design
is discussed in appendix A. Finally, an evaluation of
the software system operation and experience is pre-
sented. The purpose of the evaluation is to discuss
the success of the design in satisfving the system re-
quirements. A glossary of terms relative to the sub-
ject matter discussed in this paper is contained in
appendix B.

Symbols and Abbreviations

AP approach point

AP_CAN canister approach point

CAP capture locations (CAP1,
CAP2)

CLOSE, LOCK, individual actuator

EXTEND commands

GP grasp point

GP_CAN canister grasp point

INSTALL. REMOVE, assembly functions
ACQUIRE, PROP

1P transition point

NASREM NASA/NBS standard
reference model

Pitch, Roll, Yaw pitch, roll, and yaw

orientations of robot arm

R radius

REM removal locations (REM1,
REM2)

STORAGE storage-tray grasp point

STORAGE_AP approach point to
storage-tray canister

TRAY working-tray grasp point

TRAY_AP approach point to
working-tray canister

TRIPOD capture point for pyramid
installation

XY, Z z, y, and z positions of
robot arm

LY, 2 coordinate locations
along x-, y-, and z-axes

) angle of rotation, deg

Assembly Facility Hardware

Figure 2(a) is a schematic of the automated as-
sembly facility, and figure 2(b) is a photograph of
the actual hardware system. The facility consists of
a robot arm, a motion base, a truss, an end effector,
and strut storage trays. It uses commercially avail-
able equipment so that it can be easily modified. The
hardware system is a ground-based research tool de-
signed to permit evaluation of assembly techniques,
strut joining and end-effector components, computer
software architecture, and operator interface require-
ments that are necessary for automated in-space op-
erations. A more complete description of the facility
hardware and performance characteristics is given in
references 9 to 11.

Robot Arm

The robot arm is a six-degree-of-freedom indus-
trial manipulator selected for its reach envelope, pay-
load capacity, positioning repeatability, and reliabil-
ity. The robot-arm computer is based on a 68000

2

microprocessor, and all robot-arm motions are pro-
grammed in a modified BASIC programming lan-
guage supplied by the manufacturer.

Motion Base

The motion base includes a linear translational
carriage and a rotating turntable. The robot arm is
mounted on the carriage, which has approximately
20 ft of travel in both the z and y directions, with
a positioning accuracy of 0.002 in. The truss struc-
turc is assembled on a rotating turntable capable of
six revolutions of travel and a positioning accuracy
of 0.01 in. at a radial distance of 20 ft (0.0024°).
Motion-base drive motors on the three axes are
commanded by an Intel 80286 microprocessor-based
indexer.

Truss

A planar tetrahedral truss. such as the model
shown in figure 3, was sclected for initial assembly
studies because it is representative of the type of truss
structures required for large antennas, reflectors, and
aerobrakes. The truss is specifically designed for
automated assembly and includes regular hexagonal
rings. Core struts are those that connect the top face
to the bottom face. All struts arc nominally 6.6 ft
long and 1 in. in diameter. The complete structure
has 102 struts and 31 nodes. Assembly begins by
connecting struts to threc nodes that are premounted
on the motion-base turntable.

The truss node and joint connectors are shown
in figure 4. Two joint connectors are bonded to a
graphite-epoxy tube to form a strut. The joint has
a connector section which, during assembly, is in-
serted into a node-mounted receptacle. A locking
nut is turned by the end effector to draw the connec-
tor plunger toward the connector face of the strut,
securing the joint. The alignment and grasp adapter
is used to grip the strut and align it precisely with
the end effector.

End Effector

The end effector is a specialized tool mounted on
the robot arm that performs all strut installation and
removal operations. Figure 5(a) is a schematic of
the end effector, and figure 5(b) is a photograph of
the end effector and its components. The strut is
grasped by a set of strut holders that close around
the alignment and grasp adapters (figs. 4 and 5) that
are bonded to the strut tube. The strut holders are
mounted on a platform that is extended for insertion

of the strut into the node receptacles. A strut is in-
stalled into the truss by moving the end effector to
a position where the receptacle fingers (fig. 5(b)) are
able to grapple the node receptacle. Actuators close
the fingers around the node receptacle and passively
align the end effector and strut with the node re-
ceptacle. After alignment, the platform is extended
and inserts both joint connectors into the receptacles,
where they are held while the locking nuts are tight-
ened with nut drivers on the end effector. The strut
holders are unlatched and the platform is retracted.
The receptacle fingers are then opened to release the
structure.

All end-effector components and actuators are

equipped with simple sensors, such as microswitches
and linear potentiometers, so that the computer
program can monitor the operations and alert the
operator if a problem occurs. Small video cameras
arc mounted on each end of the end effector to permit
operator monitoring of component functions.

A six-axis force-torque sensor (F'T'S) is mounted
on the wrist of the robot arm to measure forces and
morments acting on the end cffector. The output of
the FTS is used to command small robot-armm move-
ments in a direction that will “zero” the measured
forces and moments. This movement is used to re-
duce the loads on the end effector and to enable the
end-effector components to operate freely.

Trays

The truss struts are stored in nine trays, which
arc stacked in the working canister directly behind
the robot arm (figs. 2(a) and 2(b)). Empty trays are
transferred by picking them up with the end effector
and moving them to the storage canister, which is
located on one side of the robot arm. The struts
are removed from the tray by positioning the end
effector over the strut, extending the platform so that
the strut holders contact the alignment and grasp
adapters, and latching the strut to the end effector.
The platform is then retracted to withdraw the strut
from the tray. Each tray has cylindrical handles on
both ends; these handles are fitted with positioning
and alignment adapters, which allow the end effector
to pick up empty trays from the working canister and
transfer them to the storage canister.

Assembly Process

The assembly process begins when the end effec-
tor acquires the first strut from the top tray in the
working canister. Once the strut is acquired, the
motion base is positioned so that the robot arm can

connect the strut to the structure. The robot arm,
moving through a sequence of predetermined points.
positions the strut at its point of installation or grasp
point. The end effector then inserts and locks the
strut into place. Finally, the robot arm returns to the
working canister to retrieve another strut. This basic
operational sequence is followed for the installation
of all struts. Each part of the sequence is detailed in
the sections that follow.

Acquiring a Strut From the Tray

Each strut has a preassigned tray number and a
slot location. The end effector is positioned at the
canister approach point (a predefined point at the
top of the working canister), which is directly over
the desired strut in the tray. Receptacle fingers are
closed to prevent collisions with preattached nodes
on adjacent struts remaining in the tray. The end ef-
fector is lowered to the canister grasp point (the level
of the tray containing the strut), so that extending
the platform causes the strut holders to lightly con-
tact the strut alignment and grasp adapters. When
the platform extends, the force-torque algorithm bal-
ances the forces and moments acting on the end effec-
tor while slowly applying a maximum of 20 1bf iu the
downward direction to close the strut holders. After
the strut holders are latched, the forces and torques
arc rebalanced. The platform is then retracted, and
the strut is lifted from the working canister. From
the working canister grasp point, the strut is carried
to the canister approach point, where the receptacle
fingers arc opened in preparation for the installation
operation.

Motion-Base Moves

Associated with the installation of each strut are
the carriage and turntable positions (r, y, and)
required for installation. The current carriage
and turntable positions, the required carriage and
turntable positions for the strut being installed, and
the status of the structural assembly are used to de-
termine if the carriage and/or robot arm will collide
with any struts that arc currently assembled. The
motion-base repositioning cominands can be per-
formed in any order. All motion-base moves are per-
formed with the robot arm positioned at the can-
ister approach point to minimize the distance the
robot arm extends toward the truss; this position-
ing reduces chances for collision. The motion-base
collision-avoidance algorithm is described in detail
in the section “Motion-Base and Collision-Avoidance
Design.”

Robot-Arm Paths

The robot arm traverses a predetermined path to
deliver the strut to the proper location and orienta-
tion in the structure. There are three strut instal-
lation cases: direct, capture scquence, and pyramid
completion. For direct installation, the end effector
and strut are carried dircctly to the grasp point, a
predetermined location where the strut can be in-
stalled into the structure. Direct installation entails
either the insertion of a strut between two fixed nodes
already in the structure or the installation of a strut
with a preattached node at one end. For struts with
preattached nodes, the end effector only operates the
receptacle fingers and locking component at one end
and leaves the strut-node combination cantilevered
from the fixed node to which it is installed in the
structure. The installation of a strut with a pre-
attached node creates the capture-sequence installa-
tion, which requires the end effector to install a strut
between the free end of a cantilevered strut (deflected
by gravity) and another node in the structure. For
this case, the end effector must be positioned so that
the receptacle fingers on one end grasp and capture
the cantilevered node. The robot arm is then moved
so that the receptacle fingers on the opposite end can
grasp the node in the structurc and so that both ends
of the strut can be inserted and locked into place.

The pyramid-completion installation case per-
forms the installation of a third strut into a pyra-
mid substructure. This installation is similar to the
capture-sequence installation, except that the node
being captured already connects two struts. For the
pyramid-completion installation, the deflections due
to gravity are not as large as in the capture-sequence
installation. The robot arm is again moved to the
grasp point after node capture of the two connected
struts where the strut is inserted; this move com-
pletes the pyramid configuration.

In addition to the three installation cases, there
are two removal cases that are necessary for dis-
assembly: free and direct. The free removal case
involves cantilevered struts with preattached nodes
that arc deflected as a result of gravity. The robot
arm must move to a predetermined point and close
the receptacle fingers to capture the cantilevered end.
It then continues to a second predetermined point
to avoid node receptacles of installed struts before
proceeding to the grasp point, where the strut is
removed from the structure. The direct removal case
applies to all other struts. The robot arm traverses
a straight path directly to the grasp point. The end
effector receives commands during the path sequence

4

to perform tasks such as closing receptacle fingers to
capture nodes at the proper locations.

End-Effector Operations

When the robot arm reaches the grasp point for
the strut, control is transferred to the end effector. A
strut installation includes closing the receptacle fin-
gers on the node receptacles, extending the platform
to insert the strut into the receptacles, locking the
strut into place, unlatching the strut from the end
effector, retracting the platform, and opening the re-
ceptacle fingers. Sensors are monitored after each
step, and the sequence does not proceed unless the
operation is successful.

System Software Requirements

The automated assembly system software was de-
veloped to support projected assembly system re-
quirements. These requirements were generated by
an interdisciplinary group of hardware designers, pro-
grammers, engineers, and prospective users of the
system. The participation of a wide range of dis-
ciplines resulted in a software design that has not
changed appreciably during the evolution of the sys-
tem. These system requirements are discussed fur-
ther in the following section, and the requirements
for the three devices-- motion base, robot arm, and
end cffector—-are discussed in subsequent sections.

Overall Requirements

The overall system requirements are as follows:
(1) to assemble and disassemble the tetrahedral truss
in an automated mode; (2) to provide sufficient in-
formation displays and control capability to support
a supervised autonomy mode of operation; (3) to in-
terface with advanced systems, such as planners; and
(4) to accommodate assembly system hardware and
procedural upgrades.

The requirement to provide the capability for
a fully automated assembly and disassembly estab-
lished the nced to know the predetermined condi-
tions that direct the assembly process, the current
state of all system hardware devices, and the current
state and location of every strut in the truss struc-
ture. Predetermined conditions include the geometry
of the structure, path sequences, strut storage infor-
mation, motion-base moves for strut installation, and
potential obstructions during motion-base moves.
The software must include algorithms and procedures
for gravity-deflected strut capture, motion-base col-
lision avoidance, and error recovery. When perform-
ing the assembly task, the software must command

and sequence the motion base, robot arm, and end-
effector hardware, and must provide interfaces for the
supervisor. Because each of the system hardware de-
vices is an independent subsystem that must be co-
ordinated during assembly operations, the softwarc
design must accommodate a distributed architecture
to provide local device component control.

The software requirements are driven by a need
for a user to monitor and effectively manage the
operation of the automated system. The role of
the system software user and the user interface is
therefore defined as follows:

1. The user is considered to be a supervisor be-
cause system operation is primarily in an au-
tomated mode.

2. Supervisor interaction is required only for er-
ror recovery.

3. Supervisor monitoring is supported with as
much task and status information as possible.
This information must be clear and concise.

4. The supervisor may intervene at any time to
change tasks or request information. This
intervention includes pausing the automated
sequences to look at video displays or assembly
details before either resuming or reversing the
task.

5. The supervisor has override capability over all
automated functions.

6. The supervisor is not responsible for data and
status updates resulting from commanded ac-
tions. These updates occur automatically.

7. A secondary manual or checkout mode allows
the supervisor access to all levels of commands
and data so that all automated functions can
be duplicated and analyzed. System status
checks are performed prior to execution of
all supervisor commands to avoid damaging
actions. Access to the lower command lev-
els is restricted to experienced or authorized
supervisors.

8. Three modes of supervisor input are required:
keyboard, command file, and assembly-
sequence file. The keyboard mode requires
the supervisor to enter each command man-
ually. The command-file mode alleviates some
typing by allowing the supervisor to create
a file of the actual commands that would be
entered interactively. The command-file exe-
cution should parallel the performance of the
system in the keyboard mode. The assembly-
sequence file is a higher level command file. It

contains general assembly and disassembly se-
quences, including an ordered list of the struts
to be installed or removed. The system trans-
lates the assembly-sequence file into a com-
mand file of the actual system commands. The
system allows the supervisor to perform on-
line creation, modification, and error recovery
of the command- and assembly-sequence files.

The third overall requirement is the ability to
interface with advanced systems. Under current
consideration are knowledge-based, expert system
control of assembly functions, path-planning tools for
the robot arm, and machine vision to provide robust
system operation.

The software system must accommodate assembly
system hardware, computer hardware, and procedu-
ral upgrades that result from operational experience.,
One procedural upgrade that became apparent dur-
ing the development process was the need to reverse
the assembly process after a pause or unresolved er-
ror. This capability improves supervisor confidence
in the automated system operations and provides a
powerful error-recovery technique. When an error
cannot be corrected, the system automatically ini-
tiates a reverse sequence of commands and relicves
the supervisor of having to remember the proper se-
quence. This reverse sequence imposes a significant
burden on the software. however, because the reverse
sequence is not necessarily the cxact opposite of the
forward sequence. An example of the ability to ac-
commodate new hardware involves the incorporation
of new end effectors for additional assembly tasks and
advanced operations.

Motion-Base Requirements

The motion base must position the carriage and
rotating turntable to the correct r, y, and 6 positions.
The z, y, and # positions arc cxpressed as either
absolute locations or moves relative to the current
position. The x, y, and 8 moves may execute in
any order, and each move is verified before the next
move is begun. The motion base should be able
to move to predefined locations or receive a direct
move instruction from the supervisor. Before any
movement of the motion bases, collision-avoidance
logic must determine the order of moves that will
keep the motion base from hitting the assembled
struts.

A pause option for the motion base includes
the ability to manually adjust the current position.
When reversing the motion base, the forward se-
quence is retraced.

Robot-Arm Requirements

The robot arm is required to traverse pre-
determined paths for strut installation and removal,
for moving the trays to and from the storage canis-
ter, and for changing the end effector. The robot-
arm program must be able to access the end-effector
commands directly to avoid obstacles and perform
capture tasks,

For the strut paths, the robot arm is required to
automatically move sequentially in either direction
through a series of intermediate positions that de-
pend on the strut installation position in the truss.
There are 19 unique paths used during the assembly
of the truss structure. The software must be able to
select the correct path for each strut, including the
capture of gravity-deflected cantilevered struts.

The robot-arm reverse is not always the opposite
of the forward sequence for the strut paths. Details
of the reverse are discussed in the section “Robot-
Arm Path Design.” The reverse sequences for tray
operations and end-effector changes are exactly op-
posite of their forward sequences. As with the motion
base, the pause option includes the capability for the
supervisor to adjust the robot-arm position.

End-Effector Requirements

The end-effector software must be able to gen-
erate sequences of actuator commands to perform
four basic assembly functions: install, remove, ac-
quire, and drop. The system must be able to ac-
cess the actuator commands, monitor sensor outputs,
and perform sensor conflict checking after each actu-
ator command is executed. The software design must
be able to support various end effectors, such as the
addition of a panel end effector for future assembly
operations.

End-effector error conditions detected by the sen-
sors are displayed for the supervisor. The super-
visor has the option to manipulate the end-effector
actuators directly, reposition the robot arm to permit
the actuator to function properly, continue execution
when the error is not deemed serious enough to war-
rant action, or abort error correction and allow the
system to reverse. For the end-effector functions, the
reverse is not always the exact opposite of the for-
ward sequence. The error-recovery software provides
the option of executing automatically or manually.
The end-effector software must provide direct access
to the robot-arm commands to reposition the robot
arm or to balance the forces and torques acting on
the end effector.

6

System Software Design

Although the assembly system is intended to op-
erate in a fully automated mode, it is imperative that
the supervisor be provided with appropriate internal
information and have sufficient command access and
authority to deal with assembly problems. For this
reason, the automated assembly system software de-
sign is approached primarily from the supervisor’s
viewpoint. A command hierarchy makes the control
process simple and orderly. The result is a modular
software structure that coincides with the hiecrarchi-
cal nature of automated operations. The following
sections provide the details of the software design.
Appendix A provides some insight into the actual
implementation of the design.

Design Overview
Design Layout

Figure 6 shows the design layout of the automated
assembly program. It comprises four basic levels:
administrative, assembly, device, and component.
Because of the natural hierarchy of the assembly pro-
cess, a top-down design philosophy is used; this phi-
losophy causes the highest level commands to appear
first and successively decomposes to the lowest-level
component commands. The software design process
is based upon the assembly sequence described pre-
viously and the requirement that the supervisor have
access to all levels of detail.

The administrative level is involved with the pre-
liminary setup of the system. It allows the supervisor
to examine and modify data and system options. The
command and assembly files can be selected, created,
and modified. Also, the supervisor gains access to the
lower levels of the system through the administrative
level.

The assembly level reflects the automated aspect
of the system. At this level, the software manages
all the devices, data verification, and error recovery.
Command operations at this level for assembly and
disassembly of the truss are all automated. This level
interfaces with a proposed automated task sequence
planner. The standard operating mode occurs at the
administrative and assembly levels.

The device level gives the supervisor access to
each individual device and to the functions the de-
vice performs. To obtain and install a strut requires
action by three separate devices: the motion base,
the robot arm, and the end effector. Decomposition
of the commands at the assembly level results in a se-
quential list of device-level commands. The functions
associated with each device are taken directly from

the requirements. Access to this level requires more
expertise on the part of the supervisor and involves
less automatic checking by the software.

The component level reflects the hardware ca-
pability of the current system. Each of the device
commands, such as the end-effector install com-
mand (INSTALL} decomposes into individual actu-
ator commands (e.g., CLOSE, LOCK, EXTEND)
which are the basic tasks performed by the hard-
warc. Sensor checking and verification occurs af-
ter execution of each component command. This
level is dependent on the specific devices used and
could change if the hardware changes an impor-
tant aspect to consider in the software design and
implementation.

Menu Interface

A menu-driven, rather than a command-driven,
interface is used in an effort to reduce the number of
commands at cach level and the amount of internal
system information presented to the supervisor. The
menu-driven command structure also accommodates
relatively inexperienced supervisors. Figure 7 shows
the basic menu layout for the system; the layout

ras derived directly from the design in figure 6.
The menus reflect the actions required to control the
hardware and assembly process.

Each box represents a menu on the supervisor’s
display. Menu selections can be designated by ei-
ther the number or the first unique characters of the
command. The lines between boxes indicate how a
supervisor traverses the various levels of the system.
Every menu contains “help™ to aid inexpericnced su-
pervisors by providing information about ecach sclec-
tion. As a selection is made, the item is highlighted.
The menus are overlapped on the screen as they are
sclected (fig. 8) to provide the supervisor with infor-
mation from every level. Everything entered by the
supervisor is recorded in a journal file that is avail-
able for post-test analysis.

Command Decomposition

The main menu (figs. 7 and 8) displays the four
major components of the system. Sclection 1 (Sys-
tem configuration) allows the system configuration
parameters and variable status to be displayed and
modified. Selection 2 (Auto build) initiates auto-
mated assembly according to a predetermined as-
sembly sequence contained in a predefined assembly-
sequence file. Selection 3 (Assembly functions) allows
access to the manual command mode, which provides
the supervisor with command capability at all levels

of the automated system. Selection 4 (File manipu-
lation) permits selection and editing of an automated
assembly-sequence file or a command file; these files
arc discussed in the following section.

Selection 3 reveals subsequent hierarchical menus
in which higher level menu commands are compos-
ites of lower level menu commands. The lowest level
menus are the component-oriented commands that
are directly associated with the hardware of the sys-
tem. All commands incorporate internal. automatic
checking to protect the hardware from supervisor-
controlled commands that could result in hardware
damage. As the supervisor works down the menu
hicrarchy, control and responsibility shifts from the
automated system to the supervisor. The lower level
menus rely on supervisor expertise; therefore, many
of the lowest menu levels and some error menu selec-
tions are password-protected or have hidden menu
options.

The composite commands are higher level menu
entries that initiate a sequence of commands to per-
form the sclected task. Figure 9 illustrates compos-
ite command Fetch and connect. As cach command
is executed, the associated menu is displaved and
highlighted. This layered menmu presentation allows
the supervisor to monitor the sequence of hierarchi-
cal commands and provides a trace to aid in error
recovery.

An error-recovery menu is displayed to the su-
pervisor when sensor checks indicate that a system
component did not function properly. The system
will not proceed until the problem is resolved. 1f
a problem cannot be corrected, error information is
passed back through the system hicrarchy and causes
the commanded actions to reverse their task.

Supervisor Input Modes

There are three modes of supervisor input: direct
keyboard, command file, and assembly-sequence file,
as defined in the requirements. The kevboard input
mode requires the supervisor to enter cach menu se-
lection from the keyboard. The command-file mode
allows the supervisor to create a text file of the com-
mands as they would be entered in the keyboard in-
put mode. The system obtains its input from the file,
so that the supervisor is freed for monitoring. This
freedom is particularly helpful for repetitive tasks.
A command file is executed through selection 4 (File
manipulation) from the main menu. This menu also
allows the supervisor to create a command file (Build
command file) and modify an existing command file
(Edit command file) without exiting the programn.

Limited on-line correction of the command file is
available when an illegal command is encountered.
Execution is suspended and the command-file error
menu is displayed, as shown in figure 10. The current
line in the command file, the command containing
the error, the next command, and a list of actions
available to the supervisor are displayed. In the
example shown, the current command file contains
an incorrect command. The supervisor should pick
selection 1 (Correct current command) and will be
prompted to enter a new command. After correcting
the command file, the supervisor can execute the file
two ways. Selection 2 (Re-execute current command)
will execute the corrected command, increment the
command file to the next line, and return to the
command-file error menu. This option allows the
supervisor to insert commands and execute them
one by one. The second way to initiate execution
is by picking selection 3 (Continue execution with
current command). This option starts executing at
the corrected command, continues execution from
this point, and exits the command-file error menu.
This option is similar to selection 4 (Execute the next
command and continue), but this option begins at
the next command and skips execution of the current
command.

In situations where many commands need to be
modified, it may be more efficient to abort the
command-file execution mode and edit the command
file. The command file may be edited without exit-
ing the program by selecting main menu item 4 (File
manipulation).

The third input mode, an assembly-sequence file,
executes like the command-file mode, but the format
is independent of the actual commands entered. The
format is simplified and the software converts the
file into the commands required by the system. The
assembly-sequence file format is as follows:

Assemble
strutname_a
strutname_b

Disassemble
strutname_c
strutname_d

End

The supervisor has the option of creating and modi-
fying these files without exiting the system.

8

Robot-Arm Path Design

The robot arm has three tasks to perform:
(1) traverse strut paths for installation and removal;
(2) transfer trays between the working and storage
canister; and (3) change the end effector. Transfer-
ring trays and changing the end effector are fairly
straightforward tasks. Traversing the strut path is
more complex because of the intricate orientations
necessary to locate the strut in the structure without
interference from previously installed struts. Robot-
arm tasks are detailed in the following sections.

Logic of Strut Path State

The robot-arm path from the strut storage canis-
ter to the structure and return has been divided into
segments or path states. The exact path traversed
depends upon the current strut location in the struc-
ture. The state is the current coordinate location of
the robot arm (X, Y, Z, Roll, Pitch, Yaw). The
states defined for this study are illustrated in fig-
ure 11 (GP_CAN, AP_CAN, IP, AP, and GP). This
illustration typifies the simplest sequence of moves
required to carry a strut between the canister and
the structure.

The robot-arm rest position and the point at
which it begins a strut retrieval is located immedi-
ately above the canister and is designated the can-
ister approach point, AP_CAN. The strut is picked
up at the canister grasp point, GP_CAN, and car-
ried back to AP_CAN. A transition point, IP, is
passed through before the strut is carried to the
structure approach point, AP. The transition point
is where a transition occurs from a canister-oriented
path, which involves a tray and slot number, to an
installation-oriented path that is dependent on the
strut location in the structure. The approach point
is approximately 4 in. from the grasp point at the
structure, GP, where the strut is actually installed.

Figure 12 is a complete diagram of the robot-arm
state paths, including capture operations. The fig-
ure indicates the strut installation and removal cases,
which determine the various paths, as well as con-
ditions for performing end-effector actions. Condi-
tional states, denoted by dashed boxes, from AP to
GP are special cases required for various strut can-
tilever conditions. The conditional state positions en-
able the robot arm to capture cantilevered struts and
avoid collisions with node receptacles while lining up
the strut at its location in the structure. The states
are represented by solid boxes, and the arrows be-
tween the states represent transitions between states.
End-effector receptacle finger actions, as shown by

the ovals, are required at various points along the
path sequence. The robot arm passes sequentially
from one state to the next when moving between
the canister and the structure. The arrowheads in-
dicate the directions allowed between states, condi-
tional states, and end-effector actions. The only time
the system can terminate between states is when a
hardware failure occurs.

When determining the required path from state to
state, the paths with conditions are considered first.
The unconditioned path is taken only when none of
the conditions for capture operations are met. Cases
exist for which the reverse conditions do not mirror
the forward path. When the robot arm is following
a path through a sequence and a reverse is initiated,
the arrowheads are followed. If no arrowhead points
in the reverse direction along the path, a new path is
determined by continuing until a state or conditional
state is reached that contains an arrowhead in the
reverse direction.

The path between AP and GP is dependent on
the installation or removal case, as specified by end
conditions of the strut. Struts that attach to fixed
nodes and those that are attached at only one end
proceed directly from AP to GP (direct installation
case). Struts that must capture previously installed
cantilevered struts move through points CAP1 and
CAP2 to perform the capturc mancuver (capture-
sequence installation case). Receptacle fingers are
closed at CAP1 to capture the node, and for those
installations that require the capture of two nodes,
receptacle fingers on the opposite end of the end effec-
tor are closed at CAP2. The struts that capture only
one node also travel to a CAP2 point but do not close
the fingers before proceeding to GP. Maneuvers that
capture the node of a connected pair of cantilevered
struts perform the capture at a point called TRIPOD
(pyramid installation case). The newly connected
strut completes a pyramid configuration.

The struts that are attached only at one end
are left cantilevered, and gravity causes them to sag
when they are released by the robot arm. The robot
arm must move to the deflected points before re-
leasing these struts to avoid entangling the recep-
tacle fingers on the node receptacle. The same is
true when removing the strut. A sct of points des-
ignated REM1 and REM2 are used for cantilevered
struts (free-removal case). The consistency of strut
deflections makes it possible to use predetermined
points for the capture and remove (CAP, REM) lo-
cations. The gravity-induced strut deflections and
predetermined points are not viable in space appli-
cations. Deflections in the zero-gravity environment
are smaller, but are in random directions; this ran-

domness dictates the use of sensors such as machine
vision. However, the concept of robot path segments
for retrieving combinations of struts and nodes and
for avoiding previously installed node receptacles is
still valid.

The supervisor may interrupt a move at any
point. A supervisor pause stops the robot arm
immediately and displays a pause menu on the screen
(fig. 13). The supervisor can then proceed from the
point of interruption, adjust the robot-arm position,
or return to the originating state. The supervisor
must be aware that this originating state is not the
previous state in the path, but the originating state
of the sequence. For example, if the robot arm is
currently at AP_CAN and commanded to move to
GP, a pause-reverse requested at AP causes it to
return to AP_CAN. The robot-arm motion may be
paused and reversed as many times as the supervisor
desires, this process acts as a toggle to change the
robot-arm direction.

Logic of Tray Path State

The tray path states are less complicated than
the strut path states. Figure 14 illustrates the
four states for tray storage (TRAY, TRAY_AP,
STORAGE_AP, STORAGE). To move a tray from
the working-tray canister to the storage-tray canis-
ter, the robot arm must first move from the approach
point to the working-tray canister (TRAY _AP). The
robot arm then moves down to the tray grasp point
(TRAY) and picks up the tray exactly as if it were
acquiring a strut. The tray is carried back to the ap-
proach point (TRAY_AP) and then to the storage-
canister approach point (STORAGE_AP), which is
located at the top of the storage canister. The
tray is then moved down to the storage grasp point
(STORAGE) and is released in the same manner as
a strut being placed in the canister. After relcasing
the tray, the robot arm retraces its path back to the
working-canister approach point and is ready to re-
sume strut installation. To retrieve a tray from the
storage canister, the same path is followed, except
that the pickup is performed in the storage canis-
ter and the release in the working canister. There
are only two tray operations: storage and retrieval.
Once an operation is selected, execution procecds se-
quentially with no decision points.

Logic of End-Effector Change

The path logic followed for changing the end
effector is the same as that for moving the trays.
The end-eftfector storage approach point, the actual
storage grasp point, the retrieval approach point,
and the retrieval point are predetermined locations.

9

The robot arm first proceeds to the storage approach
point and then to the storage grasp point. After
disengaging the end effector, the robot arm returns
to the storage approach point and then proceeds to
the approach point of the end effector to be retrieved.
The robot arm then continues to the retrieval grasp
point, attaches a new end effector, and returns to the
retrieval approach point.

Motion-Base and Collision-Avoidance
Design

The current motion-base controller commands
move in a sequential manner, one axis at a time.
The @, y, and ¢ positions associated with a partic-
ular strut installation are cither obtained from pre-
defined locations or input by the supervisor. Before
any motion-basc repositioning is initiated, a collision-
avoidance algorithm is executed to determine the or-
der of sequential moves that will prevent collisions
with the structure. A new axis move is initiated only
after the previous move is complete.

The supervisor may intervenc and pause at any
time during the move sequence. In the paused condi-
tion, the options are to continue, adjust, or reverse.
The adjust accepts an intermediate set of positions
from the supervisor. When reverse is selected, a re-
trace of the forward sequence is executed.

The collision-avoidance logic determines the order
in which carriage moves must be performed to pre-
vent the carriage and robot arm from colliding with
any part of the structure already assembled on the
turntable. Collisions can occur during zr-axis moves
when traveling toward the structure, and during car-
riage y-axis moves and turntable rotations if the car-
riage is positioned too close to the existing structure.
For x-axis moves, collisions occur between the car-
riage and the installed bottom-face struts. For y-axis
and turnable moves, the elbow of the robot arm and
the handles of the empty trays that protrude from
the storage canister are the two potential collision
points. (See fig. 2(a).) A set of tests are used to cx-
amine each of the two potential collision points. Only
the installed core struts {those which connect the top
and bottom faces of the truss structure) arc consid-
ered for collision because they are at the same height
as the elbow and tray handles. All calculations for
collision avoidance are performed on-line prior to the
installation of each strut.

Figure 15 defines the nomenclature to be used in
the discussion of the collision-avoidance problem. As-
sociated with each strut is the point where a collision
can occur (strut end point) and the angle Ogirut be-
tween the radius of this point Rgrat and the turntable

10

x-axis reference line. Collision avoidance is discussed
for an z-axis move, a y-axis move, a turntable rota-
tion, and a combination of y-axis move and turntable
rotation. The y-axis move and turntable rotation
algorithms are applied twice - to check for potential
collision problems with the robot-arm elbow and then
with the tray handles. The following text outlines the
algorithm used for collisions that may occur with the
elbow.

Logic for x-axis move. The x-axis carriage moves
are not a primary conceru in collision avoidance be-
cause of the structural configuration of Automated
Structures Assembly Laboratory. The use of the pre-
defined points guarantees the proper clearances. The
xr-axis move algorithm is only necessary when the su-
pervisor has requested direct access to the motion
base and has thereby manually entered the coordi-
nates. Collision avoidance is performed for z-axis
moves that position the carriage closer to the struc-
ture. An z-axis collision occurs when any installed
bottom-face strut intersects the new carriage posi-
tion. When this happens, the move is illegal and not
performed by the system.

Logic for y-axzis move. Figurc 16 illustrates the
collision-avoidance algorithm for a y-axis carriage
move. The radius of a potentially obstructing core
strut R, is the distance from the center of the
turntable to the end of the strut farthest from the
turntable. This radius is represented by a line ex-
tending from the turntable center. The desired or
next position of the carriage is depicted in the figure
by dashed lines.

Two tests are performed to identify potential col-
lisions. In the first test, the smallest absolute an-
gle (fig. 16) is computed between the r-axis refer-
ence line and the obstructing strut 8,,,, the current
robot-arm radius g art, or the desired robot-arm ra-
dius Ouq. When the angle of the strut radius lies
outside the robot-arm angles, the move can be per-
formed (case 1). When 61,4 lies between the two an-
gles formed by the robot-arm radii (cases 2 and 3),
a collision may occur and a second test must be
performed.

In the second test, a new carriage radius Fearr is
computed and the carriage location is assumed to be
at the point of the obstruction. The carriage radius
is depicted in the figure by the bracket and the radius
of the obstruction R, is the length to the dot. This
new radius is then compared with the strut radius of
the potentially obstructing strut. If the strut radius
is less than the carriage radius (case 2), the move
can proceed. When the strut radius is greater than
the carriage radius, corrective action must be taken

(case 3). Before the move can proceed. the carriage
must be moved back in the & direction. The distance
of this move, with a safety factor, is computed from
the length of the strut radius and the angle of the
obstruction as follows:

Tistance = Hops €08 (Bobs)

Logic for turntable rotation. Figure 17 illustrates
the collision-avoidance algorithm for a turntable ro-
tation. In case 1, the strut radius 2, is compared
with the carriage radius Re.pp. If the strut radius is
greater than the carriage radius, the turntable rota-
tion direction is examined, as in case 2. The angles
are calculated for feurp, Gutart. and 8.,,q. The angles
are compared, and the turntable can be rotated if
Oearr > Oepg and 0.4 > Ot Otherwise, case 3 gov-
erns, and the carriage must retreat in the @ direc-
tion before performing the move. The distance of
the x-axis move is computed in the same manner as
that for the y-axis move as follows:

Ldistance = Rypart cos (me')

Logic for combination y-axis and turntable rota-
tion. A scenario is assumed in which the y move
occurs before the turntable rotation. If no retreat in
the 2 direction is necessary, the move is completed;
otherwise, a turntable rotation followed by a y-axis
move is considered. If this combination proves col-
lision free, it is executed. When a retreat in the
x direction is necessary for both combinations, the
combination is performed that produces the smallest
move in the i direetion.

End-Effector Design

Initially, the end-effector task was to generate
actuator command sequences for the four assem-
bly functions (INSTALL, REMOVE, ACQUIRE,
DROP} and to monitor sensor output. However, op-
erational experience established a need to provide
effective error recovery. Error-recovery techniques
were developed as the error sources were identified
during actual assembly operations. The need for the
pausc and reverse capability for the supervisor, and
the ability to reverse following an unresolved error,
significantly complicated the sequencing algorithm.
Much more software was required to implement these
functions than was originally anticipated.

End-Effector Component Commands

The end-effector component commands control
the actuators and are the lowest level accessible to

the supervisor. The end-effector hardware is shown
in figure 5(b). The end-effector component com-

mands and a brief explanation of each task follow:

OPEN/CLOSE Commands the recep-
tacle fingers to open or

close

Commands a pneumnat-
ically actuated plat-
form to be extended or
retracted pushing or
pulling a strut

EXTEND/RETRACT

LOCK/UNLOCK Secures or releases the
strut to or from the
structure

LATCH/UNLATCH Commands a pair of

strut holders to close
or open around the
alignment and grasp
adapters located on
the strut

There is a set of receptacle fingers on cach end
of the end effector and a locking nut on each end
of the strut. Therefore, the OPEN/CLOSE and
LOCK/UNLOCK commands can be executed indi-
vidually for the left side and the right side. The end-
effector platforms and strut holders on both ends of
the end effector work simultanecously.

Each of these elemental component commands
implies a self-contained task that is performed by
the end-effector software. The component sensors
are checked prior to issuing actuator commands, and
the software issues the command when the status is
not in the desired state. Assembly proceeds if sensor
checking indicates that the operation was successful;
otherwise, an error is returned and the software is
suspended at this point until the error is resolved.

End-Effector Functions

The operational sequences for the end-effector as-
sembly functions are described in this section. These
functions represent the device-level end-effector com-
mands and are made up of a sequence of component
commands. The functions and a brief explanation of
cach task follow:

ACQUIRE Picks up a strut from the tray
and retains it in the end effector
DROP Puts a strut into the tray and

releases it from the end effector

11

INSTALL Inserts and locks a strut into the
structure
REMOVE Unlocks a strut and removes it

from the structure

The component commands are shown in fig-
ures 18(a) to 18(d) for the device-level commands
discussed in the preceding paragraph. Figure 18(a)
shows the sequence for the ACQUIRE command.
The column on the left lists the sequence of end-
effector component commands and robot-arm com-
mands that perform the function. The right col-
umn, reading up, contains the sequence to reverse
the ACQUIRE command. The reverse sequence is
not the opposite of the forward sequence.

The first component command issued in the
ACQUIRE sequence is to UNLATCH the strut grip-
pers as a precautionary or safety feature. Next, the
platform EXTEND is executed and is followed by the
automatic force-torque algorithm (BALANCE FTS)
to accurately align the end effector with the strut be-
fore the strut holders LATCH. A second BALANCE
is executed after the LATCH, so any alignment er-
rors that occur during the LATCH are relieved and
the strut pulls smoothly from the canister during the
platform RETRACT. At this point, the ACQUIRE
sequence is complete and the status is updated to
reflect the fact that the end effector is now carrying
the strut.

A pause capability is available for all end-effector
functions and may be initiated at any point in the
sequence. When the supervisor pauses, the pause
menu is displayed; at this point the supervisor can
resume operation by either continuing with the next
step or initiating the reverse sequence. The sequence
may be repeatedly reversed.

The implementation of the other three end-
effector functions (DROP, INSTALL, and REMOVE)
is similar to the ACQUIRE implementation, and
their command scquences are shown in figures 18(b)
to 18(d).

Error Recovery

Error conditions detected by sensors are reported
to the supervisor for selection of error-recovery ac-
tions. Two types of actions are possible-—the end-
effector actuators can be manipulated, or the robot
arm can be repositioned to permit the component
to function properly. The robot-arm motions are ei-
ther supervisor-controlled adjustments in robot-arm
position or products of the automatic force-torque
algorithm. All error-recovery actions are selections
from menus specific to each particular error, with the

12

exception of the the force-torque algorithm, which
is automatically invoked by receptacle-finger closure
€rTors.

An error menu is displayed whenever an end-
effector component fails to function properly. Selec-
tions in each of the component error menus have been
determined through experience. The error-recovery
menu for the receptacle fingers (grippers) is shown
in figure 19. Each error menu has an exit selection
(Quit) which allows termination without correction
of the component error. This exit results in an auto-
matic reversal of the action of any end-effector func-
tion currently in progress. The error menu contains
a hidden option (Go on anyway) and is only available
when the supervisor uses a password. This option is
selected if the supervisor considers the error to be of
minimal consequence and decides to assume respon-
sibility and continue the assembly operation. The
system interprets this response as if the error were
corrected.

There are three ways to exit the error-recovery
routine. An automatic exit results upon successful
resolution of the error. The other exit conditions
(Quit and Go on anyway) are supervisor-controlled
as discussed above. The software remains in the er-
ror routine until one of these conditions occurs. For
the recovery options, the status of the problem com-
ponent sensor is checked to determinc whether the
recovery action was successful. The POP command
is used when the locking nut socket is not seated.
The slight turn helps to align the socket with the
nut. Descriptions of the recovery options are listed
below:

CYCLE Reverses the command
and then reexecutes it
TOGGLE Reverses the command

that failed

LATCH ANYWAY Latches the strut
gripper, even if the
grippers are not closed

on a strut

UNLATCH ANYWAY Unlatches a strut from

the end effector

CW POP Turns the nut-driver
motor one quarter turn
in a clockwise direction

CCW POP Turns the nut-driver

motor one quarter turn
in a counterclockwise
direction

Moves the robot arm
through small cyclic
motions in a particular
direction in an attempt
to jar loose a stuck
component

DITHER ARM

Reduces the loads on a
component by slightly
repositioning the robot
arm

BALANCE FTS

ADJUST Manual repositioning
of the robot arm by

the supervisor
Data Content and Modification

The assembly system conditions are stored in a
shared data base, which contains two basic typcs
of information—the current status of all elements
of the assembly system and structure, and the pre-
determined positions that are used to direct and con-
trol the robot arm and motion bases. The current
status information is maintained continuously to rep-
resent the physical state of the system at any point
in time and to thus ensure continuity of system oper-
ations. The status is updated automatically during
test runs. The predetermined position information
for the robot arm and motion basc includes loca-
tions and orientations that arc associated with the
installation of individual struts. The predetermined
position information also describes the collision-free
paths that the robot arm and motion base follow be-
tween the canister and the various installation posi-
tions in the truss.

Data Description

Figure 20 illustrates the data section that is bro-
ken down into the following elements: motion-base
position, strut type. robot-arm status, tray status,
tray handle locations, current strut status, current
motion-base position, and end-effector status.

The MOTION_BASE_POSITION record stores
the z, y, and 0 values (X_Car, Y_Car, and Turntable)
for the predetermined motion-base locations that
establish the positioning relationship between the
robot arm and the truss. There are 70 unique
motion-base positions for the 102-member truss. In
an attempt to minimize motion-base moves, many
struts are installed with the motion base situated at
the same position. Also, the 120° rotational symme-
try of the structure allows the z and y carriage po-
sitions to be repeated for comparable struts at three
locations around the structure.

The STRUT_TYPE record contains all the data
necessary to describe the installation and storage
conditions for each of the 102 strut members. Each
strut is identified and accessed by a unique alpha-
numeric designation (Name). The current location
of the strut (Where) is accessed by the system before
any strut operation can be initiated. The system
must know if the strut is currently in its tray, in-
stalled in the structure, or held by the end effector.
When a strut is selected for installation, the system
refers to a list of struts (Connect_To), which defines
those struts that must be installed in the truss prior
to installation of the selected strut. This check is a
safety feature to ensure that the required initial con-
ditions for installation of the selected member are
satisfied. The secondary reference to the location
status (Where) of each strut on this list certifies that
all required struts are installed. The installation po-
sition (Loc_In_ Cell) identifies which of the 19 pre-
determined paths is to be followed to install or re-
move a strut. The end of a strut with a preattached
node (Node_End) indicates which nut driver on the
end effector must not be operated while installing the
strut. If the end effector must capture another node,
the end to be captured is specified (Cap_End). The
end condition of the installed strut (Cantilever) is
used to establish predefined modifications to the path
which must occur during the capture sequence. Be-
cause of tray packing limitations, a preattached node
may not be located on the correct end associated
with a direct path entry. This condition is identified
(Flip) and initiates a robot-arm command to rotate
the strut 180° at the transition point in the strut in-
stallation path. The assigned tray and slot positions
(Tray, Slot) are required to replace or inscrt a strut
in the tray. Each state in the predefined path defines
the robot-arm positions (State_Pos). The collision-
avoidance algorithm requires that the end position
of the core struts (X_End, Y_End} be defined for
computation of potential collision conditions.

The ROBOT_STATUS rccord contains the cur-
rent positioning point for all strut paths (State,
Cond _State). The current strut in the robot
arm (Strut_Now), the strut in the canister to be
retrieved (Strut_Getting_Now), or the last strut
that was installed or removed by the robot arm
(Strut_Just__Had) are represented in this record.

The TRAY_ STATUS record maintains all infor-
mation pertaining to the strut storage trays. The
path-state identifier (Tray_State) and the objective
of the move (Tray__Mode) are used to store or retrieve
a tray. The number of the tray (Current_ Tray) that
struts are being removed from or stored in is also
maintained. The approach points to the working

13

canister (Working_Ap) and to the storage canister
(Storage _Ap) are available iu this record.

The TRAY_HANDLE LOCATIONS record con-
tains the tray handle position in the working and
storage canisters utilized by the robot arm when
transferring them from one canister to the other. The
positions (Storage Loc, Working Loc) are the scts
of &, y, 2z, roll, pitch, and yaw needed by the robot
armi.

The CURRENT_STRUT record contains infor-
mation pertinent to the end effector for the strut
that is currently held by the end effector. The sta-
tus variables indicate whether the nut-driver sock-
ets are seated to lock or unlock the joint connece-
tor {Left_Seat, Right_Seat) and indicate the current
status, locked or unlocked, of the joint (Left_Nut,
Right_ Nut).

The CURRENT_MOTION_BASE_POSITION
record stores the current x, y, and 8 (X _Car, Y_Car,
and Turntable) positions of the motion bases.

The END EFFECTOR record maintains the cur-
rent status of the various components on the end of-
fector. The status of the receptacle fingers at each
end of the end effector (Left_ Receptacle Finger,
Right_Receptacle_Finger) indicates whether they
are open or closed. The position of the platform
(Platform) and the condition of the strut holders
(Latch) arc also maintained. The last data item is
the location needed by the robot arm to store and
retrieve the end effector (Storage Pos).

Appendix C provides an example of the data
interdependence and how the data are used by the
software system to perform its functions.

System Data Modification

Data examination and modification is available
through selection 1 (System configuration) on the
main menu (fig. 7). This selection provides a direct
method for accessing the status of any component
and evaluating current conditions. Upon selection of
this option, a menu displays the status of the robot
arm, current strut, and end effector. If the supervi-
sor needs to change a value, a sclection of that item
in the menu results in a list of possible values. When
changing a value that affects other data items, the
supervisor is forced by the software to change them
all. For example, if the strut location is changed to
the robot arm, the end-effector status data must re-
flect that the end effector is latched to a strut. To
change the value of any data, the supervisor must
enter a password. This password protects the data

14

from haphazard modifications by inexperienced su-
pervisors and permits complete flexibility in control
of variables for system setup and testing.

Software Design Evaluation

Four complete assembly and disassembly tests
of the 102-member truss structure have been con-
ducted. The supervised autonomy mode of operation
has proved effective and has allowed the supervisor
to correct almost all the assembly problems from the
console. The successful performance of this relatively
rudimentary research prototype is encouraging for in-
space assembly and construction.

The software program is a major factor in the
overall system success. The software design require-
ments have been met, and the software hierarchical
structure has remained essentially unchanged, while
continuing to support system evolution, especially for
crror-recovery procedures and system upgrades such
as the end-effector microprocessor discussed in ap-
pendix A. The hicrarchical structure agrees with the
NASA/NBS Standard Reference Model (NASREM)
architecture (appendix D) and fits the assembly
problem well. A key factor in the suceess of the
program was a realistic representation of the sys-
tem hardware and assembly procedures in data struc-
tures. This representation is difficult to achieve and
requires detailed consideration of the assembly prob-
lem. The benefits of an expert system implementa-
tion (appendix A) in terms of development time and
code size are apparent.

Supervisor displays that depict the hicrarchical
commands and assembly situation in real time ade-
quately provide status, context, and trace informa-
tion for monitoring and crror recovery. No formal
human-factors studies have been performed, but an
excellent test-bed for cvaluation studies exists. A
large proportion of the assembly software is con-
cerned with keeping the person in the loop, particu-
larly with providing full access and control at every
level.

Implementation of a distributed system architec-
turc and a telecoperator mode of operation needs to
be addressed. The assembly software is just begin-
ning to address a distributed system architecture, but
no consideration has yet been given to task inter-
dependence and scheduling. On-line path and task
planning is necessary for a truly viable in-space ap-
plication to be possible. A teleoperator mode for
supervisor intervention is critical for in-space error
recovery, because the supervisor must have complete
control over the assembly operation at each level.

Concluding Remarks

An initial version of an automated assembly sys-
tem for truss structures has been developed and is
currently operational. Experience gained during the
assembly and disassembly of a 102-member tetra-
hedral truss demonstrates successful performance of
the automated system and of the supervisor interface
used for monitoring and intervention. Based on this
experience, the software design, hierarchical struc-
ture, and internal data representation described are
typical of what is required for automated operations
and show promise for use in projected in-space as-
sembly and construction projects. The software re-
quirements and design serve as a modcl, as well as
a test-bed, for the development of software required
by more sophisticated automated systems.

The softwarc design process emphasized the im-
portance of defining the interface requirements and

the role of the supervisor. The interface between the
automated system and the supervisor provides a con-
cise method of displaying possible command selec-
tions, access to all device levels, and current system
task execution and status. The supervised-autonomy
mode of operation makes system supervision from re-
mote sites, such as the ground, feasible. This mode
of operation minimizes the demand for limited astro-
naut resourccs.

Hardware test experience identified unanticipated
but critical automated system capabilitics. such as
the need to pause and reverse the assembly process.
The testing also underscored the value of a well-
informed supervisor in any automated operation.

NASA Langley Research Center
Hampton, VA 23665-5225
May 19, 1992

15

Appendix A
Implementation

The assembly system is managed by several dig-
ital computers that are scrially connected through
RS-232 communication lines. The administration,
asscmbly, and device levels (fig. 6), and the operator
interface functions reside on a minicomputer and are
implemented in FORTRAN. Component-level func-
tions reside on auxiliary computers. The software
design was developed independently of a computer
hardware configuration and has been run on a numn-
ber of different computer arrangements. All commu-
nications are passed through thc minicomputer, even
though functionally they might be issued directly
from one machine to another. The data passed be-
tween processors are written in ASCII format. This
human-readable format allows stand-alone checkout
to be performed on simple terminals.

The motion base is controlled by a commercial
indexer board hosted on an Intel 80286 based pro-
cessor. Commands to this processor are generated
by a BASIC program that serves only as a transla-
tor for the positioning commands. All the collision-
avoidance calculations are performed in real time on
the minicomputer.

The robot-arm motions and end-effector compo-
nent commands are controlled by a BASIC program
on a 68000 processor. The robot-arm processor stores
data locally (all the x, y, z, roll, pitch, and yaw po-
sitions) and describes the operational position defi-
nitions and paths used for the assembly operations.
This local data storage minimizes the amount of in-
formation passed between the processors.

Two major changes have been made to the ini-
tial implementation —a softwarc language substitu-
tion and a computer hardwarc addition. As a re-
sult of the modularity of the design, the upgrades
were casily performed. The software change entailed
the development of the robot-arm, path-state logic as
an expert system; this system replaced the original
FORTRAN implementation. The computer upgrade
that was initiated involved moving the device and
component level for the new end effector to a micro-
processor. The device level of the current end effec-
tor resides on the minicomputer, and the component
level resides on the robot-arm processor. Both these
upgrades are discussed in more detail in the following
sections.

Expert System Implementation

Traditional programming languages such as FOR-
TRAN and BASIC are not well suited for encapsu-

16

lating the knowledge required for complex assembly
sequences. Preliminary investigations into the appli-
cation of expert system technologies to perform the
decision-making portions of the software system have
been very encouraging.

The Knowledge Engineering System (KES) ex-
pert system development tool was utilized in this
implementation (ref. 12). Rule-based, backward-
chaining techniques are applied to accomplish the de-
cision making or inferencing. A set of antecedent/
consequence (if/then) rules have been formulated
which capture knowledge pertaining to the path se-
lection for strut assembly and disassembly. These
rules, along with attributes and procedures, are con-
tained in a file known as the knowledge base. Back-
ward chaining (goal-directed inferencing) applies de-
ductive rcasoning to the specified rules, whereby
a given conclusion follows directly from a known
premise.

The path from the grasp-point canister
(GP_CAN) to the grasp-point (GP) is decomposed
into a number of individual states. (See fig. 12.) The
current location of the strut, the current location of
the robot arm, the type of strut being manipulated,
and the task specified by the automated system or
the supervisor (via menu selection) are all factors in
determining the sequence of states that make up the
robot-arm path. Rules have been developed to im-
plement the state logic shown in figure 12. These
rules determine the direction of the robot-arm mo-
tion and any necessary conditional states between
AP and GP. The direction of robot-arm motion is
determined from the current location of the robot
arm, the current status of the strut, and the task or
target state entered by the supervisor. Conditional
state rules are invoked when performing node capture
operations between AP and GP and are primarily de-
pendent upon strut cantilever conditions. Figure 21
contains examples of conditional state rules. Once a
move has been determined, forward inferencing is ini-
tiated to build the command string, which is sent to
the robot arm. The KES forward inferencing uses
event-driven procedural techniques that, like con-
ventional programming languages, were structured
sequentially.

This expert-system tool provides an embedding
technique for integrating expert systems with proce-
dural language code. The procedural code is able
to send, receive, and modify data from a knowledge
base through the use of run-time functions and spe-
cial data types. The embedding technique gives the
automated assembly system access to cxpert-system
techniques for decision making, but it leaves the ex-
isting operator interface intact. An expert-svstem

solution to the path determination portion of the al-
gorithm was incorporated with little difficulty by uti-
lizing the existing menu structures and input/output
(I/0) handling capabilities.

The concise representation afforded by the rule-
based expert system reduced the lines of code sig-
nificantly and increased the maintainability of the
software. Approximately 850 lines of FORTRAN
code were condensed into 20 simplified KES rules.
Even during the early stages of the development,
modifications and upgrades were performed rapidly.
The success of the expert-system implementation
has prompted the application of these techniques
to other modules of the assembly-system software,
such as tray handling, error handling, and collision
avoidance.

End-Effector Microprocessor
Implementation

All end-effector functions for the new end effec-
tor are now implemented on a microprocessor. This
end-effector software logic is implemented in the “C”
programming language on a Siemens SADB 80535 mi-
croprocessor. The development system selected is
ANSI C compatible and includes language exten-
sions that provide access to all processor-dependent

features. The SAB 80535 microprocessor supports
analog-to-digital conversion and bit I/O. The soft-
ware is responsible for both sequence control and sen-
sor monitoring for all end-effector operations. The
software maintains local data that describe the sta-
tus of the end-effector and sensor components on the
Mmicroprocessor.

The end-effector microprocessor implements the
device and component levels of the assembly soft-
ware. It decomposes the assembly-oriented device
commands (INSTALL, REMOVE, ACQUIRE, and
DROP) into component commands and monitors the
scnsors. The microprocessor integrated easily into
the automated assembly system as a result of the
design hierarchy and modularity. By standardizing
these functions, multiple end effectors can be accom-
modated that perform similar functions, such as the
INSTALL, on different entities. Thus, end effectors
that install struts and panels all look the same to
the automated assembly system. The end effector
on the microprocessor takes advantage of the experi-
ence gained in the baseline automated assembly op-
erations. Reference 13 contains additional details on
the end-effector microprocessor implementation and
software.

17

Appendix B
Glossary

actuator

backward-chaining inferencing
component

embedding

expert system

knowledge base

knowledge-based expert system

RS-232 communication line
rule-based expert system
degrees of freedom

supervised autonomy

top-down design

18

device that applies force to move a mechanism

goal-directed approach of decision making; the pursuit of a goal may
require the determination of substates, which themselves may require
a subgoal solution

any one of the end-effector hardware mechanisms

combining conventional programming applications with an expert
system to form a single executable program

a computer program that uses knowledge and reasoning techniques to
solve problems that normally require the services of a human expert

file that contains the facts and heuristics that represent human
expertise about a specific domain

subset of the general area of expert systems in which an expert’s
knowledge about a class of problems is maintained in one file (knowl-
edge base); a separate reasoning mechanism operates on this knowl-
edge to produce a solution

a communications protocol for transmitting information between two
computers in a serial mode (one bit at a time)

system that uses antecedent/consequence (if/then) constructs to
represent knowledge

number of independent position variables that would have to be
specified to locate all parts of a mechanism

a mode of system operation in which operator attention or interven-
tion is required only when a problem has occurred that cannot be
corrected by the automated system

a methodology that begins by laying out an overall program structure
and successively defining lower levels in increasing detail

Appendix C

Example of Data Accesses and Modifications

The following example shows how the data defined in figure 20 arc actually referenced and used by the
software. The actual menu items from figure 7 are shown in bold. Only the forward execution of the command
stream is shown. No pause or reverse sequences are included. To keep the example as simple as possible, it
is assumed that everything passes the appropriate tests necessary to continue exccution. The strut in this

example is of the direct installation case type.

Commands

FETCH AND CONNECT:
Input strut name to fetch
Check data to verify valid name
Verify necessary struts installed
Update data

FETCH:
Verify no strut currently in robot arm
Verify strut location
Check access to tray; do one of the following:
1} Current tray contains strut

2) Next tray contains strut

ROBOT: (Move tray to storage)
MOVE TRAYS:
TO STORAGE:

TRAY APPROACH POINT
Verify current state
Move robot arm
Update data

TRAY POINT
Verify current state
Move robot arm
Update data

Pick up tray
Similar to ACQUIRE
Update data

TRAY APPROACH POINT
Verify current state
Move robot arm
Update data

STORAGE APPROACH POINT

Verify current state
Move robot arm
Update data
STORAGE POINT
Verify current state
Move robot arm
Update data

Data accessed

STRUT_TYPE.Name
STRUT_TYPE.Connect_To
ROBOT_ STATUS.Getting_ Now = Strutname

ROBOT_STATUS.Strut_Now = NONE
STRUT_TYPE.Where = CANISTER

STRUT TYPE.Tray =

TRAY STATUS.Current_Tray
STRUT_ TYPE.Tray >

TRAY STATUS.Current_ Tray

TRAY_STATUS. Tray_Mode = STORING

TRAY_STATUS. Tray_ State
TRAY_STATUS.Tray_Ap
TRAY_STATUS.Tray_State = TRAY_AP

TRAY_STATUS.Tray_State
TRAY_HANDLE LOCATIONS.Working_Loc
TRAY_STATUS.Tray_State = TRAY

TRAY_STATUS.Current_ Tray decremented by 1

TRAY_ STATUS.Tray_ State
TRAY_STATUS. Tray__Ap
TRAY STATUS.Tray_State = TRAY_AP

TRAY_STATUS.Tray_ State
TRAY_STATUS.Storage_ Ap
TRAY_STATUS.Tray_ State = STORAGE_AP

TRAY STATUS.Tray_State = STORAGE_AP
TRAY HANDLE LOCATIONS.Storage_Loc
TRAY_STATUS.Tray_State = STOR

19

20

Drop tray
Similar to DROP

STORAGE APPROACH POINT

Verify current state
Move robot arm
Update data
TRAY APPROACH POINT
Verify current state
Move rohot arm
Update data

3) Exit
ROBOT: (Move robot arm to canister point)
STRUT POSITION:
CANISTER APPROACH POINT:
Verify current state
Move robot arm
Update data
STRUT POSITION:
CANISTER GRASP POINT:
Verify current state
Move robot arm
Update data
END EFFECTOR: (Pick up strut from tray)
ACQUIRE:
Verify strut currently in canister
Check latches
UNLATCH STRUT
Update data
Check platform
EXTEND
Update data
CANISTER BALANCE
Check latches
LATCH STRUT
Update data
CANISTER BALANCE
Check platforms
RETRACT
Update data

ROBOT: (Move robot arm to canister approach
point)
STRUT POSITION:
CANISTER APPROACH POINT:
Verify current state
Move robot arm
Update data

TRAY _STATUS.Tray_ State
TRAY_STATUS.Storage_Ap
TRAY_STATUS. Tray_State = STORAGE_AP

TRAY_STATUS.Tray_ State
TRAY_STATUS.Tray_Ap

TRAY_ STATUS.Tray_State = TRAY_AP
TRAY STATUS.Mode = NONE

ROBOT_STATUS.State
STRUT_TYPE.State_Pos
ROBOT_STATUS.State = AP_CAN

ROBOT STATUS.State
STRUT_TYPE.State_Pos
ROBOT _ STATUS.State = GP_CAN

STRUT_TYPE.Where = CANISTER
END_EFFECTOR.Latch = LATCHED

END_EFFECTOR.Latch = UNLATCHED
END_EFFECTOR.Platform = RETRACTED

END_EFFECTOR.Platform = EXTENDED
END_EFFECTOR.Latch = UNLATCHED
END_EFFECTOR.Latch = LATCHED
END_EFFECTOR.Platform = EXTENDED
END_EFFECTOR.Platform = RETRACTED
STRUT_TYPE.Where = ARM

ROBOT_ STATUS.Strut Now = Strutname
ROBOT_STATUS.Getting_now = NONE

ROBOT_STATUS. State
STRUT _TYPE.State_Pos
ROBOT STATUS.State = AP_ CAN

CONNECT:
Verify strut currently in robot arm
Verify robot arm at canister approach point
MOTION BASE: (Move motion base to
assembly position)
DEFINED LOCATION:
PICK LOCATION:
ASSEMBLY LOCATION:

Check current position
Perform collision avoidance
Determine execution order
Move motion base

Update data

ROBOT: (Check robot arm position)
STRUT POSITION:
Check current state
END EFFECTOR:
COMPONENT COMMANDS:
{Open receptacle fingers)
Verify receptacle finger status

OPEN:
LEFT RECEPTACLE FINGER
Update data

Verify receptacle finger status

OPEN:
RIGHT RECEPTACLE FINGER
Update data

ROBOT: (Move robot arm to grasp point
from canister approach point)
STRUT POSITION:
TRANSITION POINT:
Verify current state
Move robot arm
Update data
APPROACH POINT:
Verify current state
Move robot arm
Update data
GRASP POINT:
Verify current state
Move robot arm
Update data

STRUT _TYPE.where = ARM
ROBOT_STATUS.State = AP_CAN

MOTION_BASE_POSITION.(X_Car, Y_Car,
Turntable)

CURRENT_MOTION_BASE_POSITION

STRUT_TYPE.(X_End. Y_End)

CURRENT_MOTION_BASE_POSITION =
MOTION_BASE_POSITION

ROBOT_STATUS. State

END_EFFECTOR.Left_Receptacle_Finger =
CLOSED

END_EFFECTOR.Left_Receptacle_Finger =
OPENED

END_EFFECTOR.Right_Receptacle_Finger =
CLOSED

END_EFFECTOR.Right_Receptacle_Finger =
OPENED

ROBOT_STATUS.State
STRUT_TYPE.State_Pos
ROBOT_ STATUS.State = 1P

ROBOT_STATUS.State
STRUT TYPE.State_ Pos
ROBOT_STATUS.State = AP

ROBOT_STATUS.State
STRUT_TYPE.State_Pos
ROBOT_STATUS.State = GP

21

22

END EFFECTOR: (Install strut into structure)

INSTALL:
Verify strut currently in robot arm
Verify receptacle finger status

CLOSE:
LEFT RECEPTACLE FINGER
Update data

Verify receptacle finger status

CLOSE:
RIGHT RECEPTACLE FINGER
Update data

BALANCE FTS (Balance the force and
torques)
EXTEND
Update data
LOCK:
LEFT NUT
Verify left nut status
Put socket over nut
Verify seating of nut
Update data
Lock nut
Update data
LOCK:
RIGHT NUT
Verify right nut status
Put socket over nut
Verify seating of nut
Update data
Lock nut
Update data
Check latches
UNLATCH STRUT
Update data
Check platforms
RETRACT
Update data
Verify receptacle finger status

OPEN:
LEFT RECEPTACLE FINGER
Update data,

Verify receptacle finger status

STRUT_TYPE.Where = ARM
END_EFFECTOR.Left__Receptacle_Finger =
OPENED

END_EFFECTOR.Left_Receptacle_Finger =
CLOSED

END_EFFECTOR.Right_ Receptacle_Finger =
OPENED

END_EFFECTOR.Right_ Receptacle_Finger =
CLOSED

END _EFFECTOR.Platform = EXTENDED

CURRENT_STRUT .Left_ Nut = UNLOCKED

CURRENT_STRUT Left_Seat = SEATED

CURRENT_STRUT.Left_ Nut = LOCKED

CURRENT_STRUT.Right_Nut = UNLOCKED

CURRENT_STRUT.Right_Seat = SEATED

CURRENT_STRUT.Right_Nut = LOCKED
END_EFFECTOR.Latch = LATCHED

END_EFFECTOR.Latch = UNLATCHED
END_EFFECTOR.Platform = EXTENDED

END_EFFECTOR.Platform = RETRACTED
END_EFFECTOR.Left_Receptacle_Finger =
CLOSED

END_EFFECTOR.Left_ Receptacle_Finger =
OPENED

END_EFFECTOR.Right_ Receptacle_Finger =
CLOSED

OPEN:
RIGHT RECEPTACLE FINGER
Update data

ROBOT: (Move robot arm to canister approach
point from grasp point)
STRUT POSITION:
Check current state
APPROACH POINT:
Verify current state
Move robot arm
Update data
TRANSITION POINT:
Verify current state
Move robot arm
Update data
Input the strut name to fetch
Check data to verify valid strut name
Verify necessary strut installed
Update data
END EFFECTOR: (Close receptacle fingers of
all ends with no nodes)
COMPONENT COMMANDS:
Close side_1 receptacle finger
Verify receptacle finger status

CLOSE:
SIDE_1 RECEPTACLE FINGER
Update data

Close side_2 receptacle finger
Verify receptacle finger status

CLOSE:
SIDE_2 RECEPTACLE FINGER
Update data

ROBOT: (Continue robot arm move to canister
approach point)
STRUT POSITION:
CANISTER APPROACH POINT:
Verify current state
Move robot arm
Update data

END_EFFECTOR.Right_Receptacle_Finger =
OPENED

ROBOT _ STATUS.State
STRUT_TYPE.State_Pos
ROBOT STATUS.State = AP

ROBOT STATUS.State
STRUT_TYPE.State Pos
ROBOT STATUS.State = IP

END_EFFECTOR.Side_1_Receptacle_Finger =
OPENED

END_EFFECTOR.Side__1_Receptacle_Finger =
CLOSED

END_EFFECTOR.Side_2_Receptacle_Finger =
OPENED

END_EFFECTOR.Side_2_Receptacle_Finger =
CLOSED

ROBOT_STATUS.Statc
STRUT_TYPE.State_Pos
ROBOT_STATUS.State = AP_CAN

23

Appendix D
Comparison With NASREM

Although the automated-assembly system soft-
ware is developed from the system requircments,
the resulting program structure closely resembles the
NASA/NBS Standard Reference Model (NASREM)
architecture (ref. 14). The NASREM architec-
ture is depicted in figure 22, and the correspond-
ing automated-assembly software structure is shown
in figure 23. The automated-assembly hierarchy
corresponds to the four lowest levels of NASREM.
For example, the NASREM primitive level can be
compared with the automated-assembly device level,
which includes the robot arm, the end effector, and
the motion base. (See fig. 6.) The NASREM
element-move level corresponds to the assembly level
in the automated-assembly hierarchy. Figure 23 in-
cludes only those functions at each level that are
needed in the automated-assembly application. Typ-
ical supervisor commands at each level and error-
recovery actions are included for completeness.

Hardware actions and sensor processing occur at
the component (NASREM servo) level. Error con-
ditions are resolved by either supervisor intervention
or automated actions at the component level. Un-
resolved errors are passed back through the hierar-
chy, and an automatic reverse of the tasks performed
at each level is initiated. For the assembly task, al-
ternative actions, which take the form of substituting

24

other struts for failed members, are available only at
the administrative level. A use of alternate struts
requires replanning the assembly sequence.

Aside from the component level, the only other
testing is performed at the assembly level. These
tests involve physically exercising the locking nut im-
mediately after a strut is picked up from the canister
to insure that it can be installed. Another test is
performed immediately after locking a strut into the
structure by attempting to retract the platform be-
fore unlatching in order to verify the integrity of the
joint lock. A failure of either of these tests would
result in the selection of an alternate strut.

The world model information base is updated
at two levels—-the device level and the assembly
level. At the device level, the end-cffector status
model is updated at the successful completion of
each component action. At the assembly level, the
truss-structure model and the storage-canister status
are updated with the installation or removal of each
strut.

The NASREM architecture provides good con-
ceptual agreement with the automated-assembly ap-
plication, although not all activities have an entry at
cvery level. The hierarchical model does provide a
particularly concise display for supervisor visualiza-
tion. The hierarchical structure is capable of sup-
porting several assembly operations by providing a
standard interface between the levels.

References

1.

. Bush, Harold G.;

Heard, Walter L., Jr.; Bush, Harold G.; Wallsom,
Richard E.; and Jensen, J. Kermit: A Mobile Work Sta-
tion Concept for Mechanically Aided Astronaut Assembly
of Large Space Trusses. NASA TP-2108, 1983.

Dorsey, John T.; and Mikulas, Martin M., Jr.: Prelim-
inary Design of a Large Tetrahedral Truss/Hexagonal
Panel Aecrobrake Structural System. AIAA-90-1050,
Apr. 1990.

. Heard, Walter L., Jr.; Watson, Judith J.; Ross, Jerry L.;

Spring, Sherwood C.; and Cleave, Mary L.: Results of the
ACCESS Space Construction Shuttle Flight Experiment.
A Collection of Technical Papers- AIAA Space Systems
Technology Conference, American Inst. of Aeronautics
and Astronautics, June 1986, pp. 118-125. (Available as
ATAA-86-1186.)

Herstrom, Catherine L.; Heard,
Walter L., Jr.; Collins, Timothy J.; Fichter, W. B
Wallsom, Richard E.; and Phelps, James E.: Design and
Fabrication of an Erectable Truss for Precision Segmented
Reflector Application. J. Spacecr. € Rockets, vol. 28,
no. 2, Mar. Apr. 1991, pp. 251-257.

Space Station Freedom External Maintenance Task Team
Final Report Volume I, Part 1. NASA Lyndon B.
Johnson Space Center, July 1990.

Space Station Freedom External Maintenance Task Team
Final Report Volume I, Part 2. NASA Lyndon B.
Johnson Space Center, July 1990.

Space Station Freedom External Maintenance Task Team

Final Report - Volume II, Part 1. NASA Lyndon B.
Johnson Space Center, July 1990.

10.

11.

12.

13.

14.

Space Station Freedom Erxternal Maintenance Task Team
Final Report— Volume II, Part 2. NASA Lyndon B.
Johnson Space Center, July 1990.

Rhodes, Marvin D.; Will, Ralph W.; and Wise, Marion A.:
A Telerobotic System for Automated Assembly of Large
Space Structures. NASA TM-101518, 1989.

Rhodes, Marvin D.; and Will, Ralph W.: Automated As-
sembly of Large Space Structures. IAF Paper No. 90-272,
Oct. 1990.

Will, Ralph W.; and Rhodes, Marvin D.: An Automated
Assembly System for Large Space Structures. Cooperative
Intelligent Robotics in Space, Rui J. deFigueiredo and
William E. Stoney, eds., Volume 1387 of Proceedings of
SPIE—-The International Socicty for Optical Engineering,
Soc. of Photo-Optical Instrumentation Engineers, 1990,
pp. 60-71.

Knowledge Base Author’s Manual KES PS. Software
Architecture & Engineering, Inc., ¢.1990.

Doggett, William R.; Rhodes, Marvin D.; Wise,
Marion A.; and Armistead, Maurice F.: A Smart End-
Effector for Assembly of Space Truss Structures. Paper
presented at SOAR 91 - Fifth Annual Space Operations,
Applications, and Research Symposium, Final Program
(Houston, Texas), July 9 11, 1991.

Albus, James S.; McCain, Harry G.; and Lumia, Ronald:
NASA/NBS Standard Reference Model for Telerobot Con-
trol System Architecture (NASREM). NBS Tech.
Note 1235, U.S. Dep. of Commerce, July 1987.

25

26

(a) Proposed astronomical observatory.

L-90-4776
(b) Concept for a Mars transfer vehicle and aerobrake.

Figurc 1. Artist’s conception of future space missions.

Robot arm End effector

. Trays with
Storage canister ' \, Y

truss struts

()?Vorking canister

Y-motion base

« X-motion base

Rotating-motion base

{a) Schematic.

L-90-5053

(b) Photograph.

Figure 2. Langley Automated Structure Assembly Laboratory.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

27

28

L-88-10,307
Figure 3. Truss geometry.

Joint components

| Locked joint

L-90-11104

Figure 4. Truss node and connecting joints.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Truss node
Joint receptacle

Strut holder
Truss strut

Receptacle fingers

[.-89-4991

(a) Schematic.

. Receptacie fingers
Node receptacie

*{?’W R

(b) Details of mechanical system.

Figurc 5. End-effector tool.

CRIGINAL PAGE
BLACK AND WHITE Pii{OTOGRAPH

W)SAs A[quosse pajeuioine jo jnode] uSise(] 9 aandig

INAS YNeuN —

. '
1
NS ydie _ doJa “ _
30U 320N -
U 207] " a1nboy _ _
wJiojie(d yoenyay
w0 33e1d puaIX3 _ aroway _ _
Jabujj a(oe3dadnas asoid _ _
Jobuyy a(oeidanad uado _ Lesul _
abeJoyg ~ _ _ _
ﬂ abeJo1s jujod-ydeouddy — _ _ _
Aed | -
MEA _” AeJy yujod-yoeosddy | _ _ 21018 _ 0132398
unid 21m5ns Juj0d-dseag — | L Jovaszpuimy | | pue uawsbeuew a1y
110 2Jn35NJ3S Jujod-ydseouddy _ | _ _ aAowaY 31018 pUe 2A0WAY
z utod uoljsuely uied InNG w.e 30qoy 4 §SNJY aU) pling
X J315)ued juj0d-ydeolddy | _ _ 1>2uu0) _
X Ja1sjued juiod-dsesg _ — 40323})3 pua abuey —— 3SEQ U0I10L _ 123UU0) pue ynaj §35UaNbas P1nQoINY
iod yseny una4 _
ﬂ jujod yseye yseouddy _ _ _ SU0§}23{2s Uo}3do
W wod x._mn_u _ _ pUB SUO}IRI}SIPOW
uj0d yJed yseosddy _ _ _ Jajaweled wajsAs
| | _
_ UoiIBI0| Paydafas-Jasn _ _
A T'|
SUO{3EJ0] Pau}}apald “ _
| _
| NOILINN VN “ |
LNINO4WO0D) 301A3Q ! A1gW3ISSY v JAILVYHLISINIWGY

30

LILI I

LI
anu By 2
hu e o

ing
diay

CPLRNTINNY!
s3unjoq Je3s1uD)
e asun|og

1y 1080y

itng
disy *
nsie yatogun

RELI I
diey ‘¢
JaBuyj ejdoydsaea yybiy ‘7
yeBuiy e|d01d83eu 137)

100

djey

cpuasmoa K1) 110
epuoweoa jusuodeo)

g g
LIL I
uiod yaoiiy ‘p
Jujad yanyio yaoouddy g
Jurod wuog ‘2

jujod yuad ysoouddy |

ng
ajey *

OIRMIJOS UIDYSAS A[QUIDSSE POJRUIOIN® JO JNOAR] NUSTI DISRY) 9IS g

siouteue) -
nuam u|os 0} uanyey

djey -

| 8|1} (ouvna(saog *

—nme

L
djey ‘9

souenbes Niquesso 31p3 "§
sousnbes fAigquesso pring -y
8|1) punesos 31p3 g

®i1) puowsos pjing 'z

_

®|1; puoesos sindexy

14100 yooouddo Aoy -
jegod afesnig -

9
S
Jurod Roug cy
€
4
jutod ysoouddo eBouoyg - |

0
6

'] doug -

nare Y2107 oy surnbay -

Iy yaajun 9 i snoeey

RLUTR ELD IR S [ELILTTI
RELURL T I
pusixy ‘¢
z
1

g —_———e
djsy LY
suoy disy ‘¢
|sung 1u1od yooiiy ‘2
»1gnog 14100 yaoy |
ojBurg
i

) Vg

0 e ; diey -

dysy g 4013850 pus eBusyy °

sBounie mosy 'z afiouy snoy

o8ouois o] ‘|

unyjisod ynatg

ua)iowoa0 jles *
40390440 puy *

— 1990y
anq uojjoy

9
S
9
sousen) ‘g
1
€
2
!

FILIIN]

dieq "y

deye sua dnyoog -g:

aunjanais uo jujod debuy °g!
9un3ionule 1o jujod yooouddy “hj__J
VU100 uoiiereund] g

Ju1ad ysoouddn Jsjelunl ‘71
Jui0d d8oud ueis(uo] 1|

10] j0q0y eaoy|

EER 4
E_—
03H1430 ¥3s
And g
djey -
usyinao| Riqueeey
Ao
010491103

03H1430 3145

g Ch
die4 ‘g

' o3njoegy Z|
eniio(ey |

I B

np

diey

smay

uo|3jpao| 0} og
BUO 1020} peuljeq

N 9

ajey g

uDyIBDA| JUBJUND BA0S
CLIRCELTRE ETFIES
uo|11030| 93i0|8q ‘2
ua(ID30| AUYYeq ')

VIng v
ajen
o e
B . ug ‘1
vl [
£ |
z
'
1m0

dyey

=nyo3a Jayosjja pugy
8n1038 jnulg

enyois 30qoy

spow Mg 4

aroy 1y
Indie maowey g
ARJ1E joeuuDy g
na3e eu01g '}
ndIs y3ey ¢

-:can-so.-vccnaaas.N
INJIE 138UUOD PuUD YaIey |

X3

asnng

diey

usop semdy
uo(in|ndiuos ey

suoiiauny Aigeessy

I
Ny e
I

N
diey 'g
z
I

|ena} Joyiuoy -
ssou 3ajag

g S—

wng gy

' died
epow uo|ipjneys -
a Buipundad jusae
puo ‘ousend ‘piag 2

1j|1 LLRURUSRUT PNLE] ._7

pIing o3ny
uoiipunBijuos wejafig
NHIL HIHU

31

32

Menu item?

fetch and connect_

1. yste Robot . OFF
2. ARUto build
3. ASsembly functions STRUT STATUS
4. File manipul
5. Help 1. CUrrent Hame : R2C6/6_4
6. Quit 2. Data, 1. CAHtilever + FIKED
3. SImul{l. Robot stat|2. Tray : 3
4, Help |FOESIYEVAEERRRY (3. Slot :)
S. Quit |3. End effect{4. End with node : HOHE
4. Help 5. CAPture end . NONE
5. Quit 6. Uhere ¢ RARN
7. Flip : UP_HORMAL
8. Hode direction: HOHNE
9. More information
18, Quit
*
Robot State: HP_CAN
Sub_state: none
fenu item? 1 Strut Hame: R2CH/6_% in hand
Henu item? 1 Strut Status: Hhere Cantilever
Menu item? 2 UP_HORNAL HRA FIRED
MNenu item? Tray: 3 Slot: 5 Path: 122
Figure 8. Illustration of hierarchical menu overlay.
1. System configuration
2. AUto build
3. HSzembly fun
O AR LON Rl . FETCH And connect strut
5. Help 2. RENGUE And stor
6, Quit 3. FETCH Strut Nowve Robot To:
4. STore strut
5. COnnect str| DOUBLE EE ach point
6. REMODUE Strufl.
7. Help 2, [Clos structure
8. Quit 3. Exte|l. Left scar |ucture
4. Retr |E§ i e
5. LOck|3. Help
6. UHLO[4. Quit
7. LAtc
8. UHLAtch strut 8,00 0,04
9, Help AP_CAH
18, Quit none
R2C6/6_.4 getting
Strut Status: lhere Cantilever
Mlenu item? assemb UP_HORNAL CANISTER FIRWED

Tray: 3 Slot: 5 Path: 12_2

Figure 9. Menu display for automated composite command (fetch and connect).

AUto build

Help
Quit

h Nk WM

RSsembly functions
File manipul

ing
Robot status

Strut status
End effector status

2. Data,

3. Slmul]l.

4. Help |2.

5. Quit (3.
1.
5

Fite name
? test.command
Menu item?

He lp
COMMAHD FILE ERROR MEHU
current Line : 3
current command: change strut
next command : tray B

O U= LMD —

CORrect current command

Re-execute current command

COHt inue execution with current command
Execute next command and continue
Increment command file commands

Abort command file execution

Figure 10. Display of command-file error menu.

Storage-
tray canister

Figure 11. Diagram of robot-arm states for strut paths.

33

Strut installation and removal:

1. Direct

2. Capture sequence

3. Pyramid completion

4. Free

End-effector actions:

a. Capture or release second
cantilevered node

b. Close fingers on end with no node

c. No nodes on either end of strut,
close remaining end

d. Capture or release end of strut

e. No strut in hand

(Openy+CQpen

IP AP_ CAN|e»GP_ CAN
[

(CoTiosd)

i_.--1d

Figure 12. Complete robot-arm state diagram and logic. Dashed boxes indicate conditional states.

1. System configuration

2. HAUto build

3. HASzembly f

4. File manipul|l. FETCH And connect strut

5. Help 2. RENMDUE And stor

6. Quit 3. FETCH Strut Noue Rob

: 4. STore strut 1. CAHIS |## % kack ok ok ok koA ok
5. COnnect strut 2. CAMIS| ROBOT PRUSE NEHU
£. RENOUE Strut N
7. Help 4. RAppro 1. Proceed
G. Quit 5. brasp 2. Hdjust
6. Direc 3. FReverse
7. Help
B, Quit [FEFEERRERERRRRRRRARE
ne: -80.0v8 g.04 8,064
Robot State: AP_CAH_TO_IP
Sub_state: none

Menu item? 3 Strut Hame: R2C6/6_4 getting

flenu item? 9 Strut Status: lhere Cantilever

flenu item? 3 UP_HORIAL INSTALLED FIXED

Heru item? _ Tray: 3 Slot: 5 FPath: 12_2

Figure 13. Supervisor display of robot-arm pause menu.

Storage_AP @ @ Tray AP

Storage i

AT R A T

Storage-tray Working-tray
canister canister

Figure 14. Diagram of robot-arm states for tray moves.

Turntable
Obstructing
strut
Strut end _\
point
Tray

handles —

I
Tray — ’E] Cb
Carriage —/ j >y

\ x-axis reference line

Y

Figure 15. Descriptive diagram of collision avoidance.

Robot

35

36

Figure 16. Carriage collision logic for y-axis move. Dashed lines are desired position of carriage.

Case 2

Figure 17. Carriage collision logic for turntable rotation. Dashed lines are desired position of carriage.

37

ACQUIRE sequence Reverse ACQUIRE sequence

Unlatch
Order
of Extend Retract
execution
BalanceFTs = — == ~—77° A
Latch Unlatch
v Balance FTS = = = = = == -
of
_______ Balance FTS execution
Retract Extend
Complete
(a) ACQUIRE command.
ROP uence Reverse DROP sequence
Extend Retract ‘
Order
of Balance FTS Balance FTS
execution
Unlatch Latch
Order

_— - Balance FTS ex:guuon
Retract Extend
Complete

{b) DROP command.

Figure 18. Operational sequences for end-effector assembly functions.

Order

execution

INSTALL sequence
Close(L)
Close(R}
Balance FTS

Extend

' Lock(L}
Lock(R)

Open(L)
Open(R)

Complete

Open(L)
Open(R}
Retract
Unlock(L)
Unlock(R)
Check seating(L)

Check seating(R)

Latch

Extend
Unlatch

Balance FTS

Close(L)
Close(R)

(c) INSTALL command.

REMOVE sequence

Close(L)

Order Close(R)

execution

Unlatch
' Extend

Latch

Balance FTS

Check seating(L)
Check seating(R)
Unlock(L)

Unlock({R)

Retract

Openl(L)

Open(R)

Complete

Lock({L)
Lock(R)
Extend

Balance FTS

Close(l)

Close(R)

(d) REMOVE command.

Figure 18. Concluded.

Reverse INSTALL sequence

Order

execution

39

MUaUI AI9A0DI-I0119 10399PI-pus] "1 oIndrg

¢ 9 4ibd 11015 g :fou] T ;@831 hus|
21N WdH THUHOHT4N ag0]2 10U pIp upas by
Jana| | Juny aJayy ShIbY5 INUIS - 40443 4344149
puby ui [79/2314 g LWL nuay
auou nd g 5 WA}l nuay
diaH 5 C jwWall nua|j
AR R YND o CLIWINn 02
diag "9{23g71 "L
wnlpg 507N ‘9 g gl ving g
€34 IUDOg “H¥I0T CS 4134 ¢ d1sH 2
I wJan Jdayyig Cgjaiay cpjuwwod Ryryran tg|21sps 9
Jaddiub 81660 z|21x3 ol CEREEUENCEIGREEE| 2wp) '
Jaddiub 21203 1| CEIRIEE doad ‘| 135 b
NH3IW HOHYI H3ddIYg |u=dg [a.41nby | EHETENIES
_ 379004 anoway 7130904 7
jtod 1103¥sUT 1101301
10] 10Q0Y m_ T njg -9
Joys puy InOUIY 'Z 13y g
(d oujBuruuny 33 INJ}s 303UU0d puy HJ134 Tfindiuow 3) 14
NO -4913123}33 puU3 unj hjgquassy ¢
NO 3bv 1 uun) Pying oy ‘¢
NO ¢ j0qoy uolypbunbyjuoa waysfis

40

Record Variable
MOTION BASE POSITION
X Car
Y Car
Turntable

STRUT_TYPE
Name
Where
Connect_To
Loc_In Cell
Node End
Cap_End
Cantilever
Flip
Tray
Slot
State Pos

X,” Y, 2, Roll, Pitch, Yaw

X_End, Y_End

ROBOT_STATUS
State
Cond_State
Strut_Now
Strut_Getting Now
Strut_Just_Had

TRAY STATUS
Tray_State
Tray_ Mode
Current_Tray
Working Ap
X, ¥, Z, Roll, Pitch, Yaw
Storage Ap
X, ¥, 2, Roll, Pitch, Yaw

TRAY HANDLE, LOCATIONS
Storage Loc

X, Y, Z, Roll, Pitch, Yaw

Working Loc

X, ¥, Z, Roll, Pitch, Yaw

CURRENT STRUT
Left_Seat
Right_Seat
Left_Nut
Right Nut

CURRENT_MOTION_ﬁASE_?OSITION
X Car
Y Car
Turntable

END_EFFECTOR
Left_Receptacle Finger
Right Receptacle Finger
Platform
Latch
Storage_Pos
X, Y, 2, Roll, Pitch, Yaw

Description

Motion-base configuration
Carriage x position
Carriage y position

Theta angle in degrees

Strut description

Strut name

Current strut location

Struts needed for support
Installation position in truss
End with node

End to capture

End conditions of strut

Flip indication

Tray number containing strut
Position in tray

Posgition for each robot state

Core strut end poiﬁts for collision avoidance

Manipulator arm current mode

Robot path location

Subgtate point in a path

Name of strut in arm, if any

Name of strut in process of retrieving
Name of last strut installed

Current tray locations and mode

Path location

Current tray operation

Tray on top

Robot position for working approach point

Robot position for storage approach point

Robot position in storage canister

Robot position in working canister

Strut currently in arm
Nut-driver alignment status

Nut status

Motion-base configuration
Carriage x position

Carriage y position

Lazy Susan theta angle in degrees

End-effector status

Left receptacle fingers status
Right receptacle fingers status
Status of platform

Strut holders status

Robot position for storing

Figure 20. Data variables and descriptions.

41

43

Form Approved

REPORT DOCUMENTATION PAGE OB o168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headgquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY(Leave blank) } 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1992 Technical Paper

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Software Design for Automated Assembly of Truss Structures

WU 506-43-41-02

6. AUTHOR(S)

Catherine L. Herstrom, Carolyn Grantham, Cheryl L. Allen,
William R. Doggett, and Ralph W. Will

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23665-5225

pron, ? 1-16983

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TP-3198

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 63

13. ABSTRACT (Maximum 200 words)

Concern over limited extravehicular and intravehicular activitiy time has increased the interest in performing
in-space assembly and construction operations with automated robotic systems. A technique being considered
at Langley Research Center is a supervised-autonomy approach, which can be monitored by an Earth-based
supervisor that intervenes only when the automated system encounters a problem. A test-bed to support
evaluation of the hardware and software requirements for supervised-autonomy assembly methods has been
developed. This report describes the design of the software system necessary to support the assembly process.
The system is implemented and successfully assembles and disassembles a planar tetrahedral truss structure.
The software is hierarchical and supports both automated assembly operations and supervisor error-recovery
procedures, including the capability to pause and reverse any operation. The software design serves as a model
for the development of software for more sophisticated automated systems and as a test-bed for evaluation of
new concepts and hardware components.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Robotic; Assembly of truss structures; Automated assembly; Software design 45
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified
NSN 7540.01-280-5500 Standard Form 208(Rev. 2-89)

Prescribed by ANS| Std. Z739-18
298-102

